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Abstract

This paper studies maximum likelihood estimation for a parameterised elliptic
diffusion in a manifold. The focus is on asymptotic properties of maximum
likelihood estimates obtained from continuous time observation. These are
well known when the underlying manifold is a Euclidean space. However, no
systematic study exists in the case of a general manifold. The starting point
is to write down the likelihood function and equation. This is achieved using
the tools of stochastic differential geometry. Consistency, asymptotic normality
and asymptotic optimality of maximum likelihood estimates are then proved,
under regularity assumptions. Numerical computation of maximum likelihood
estimates is briefly discussed.
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1. Introduction

Diffusions in manifolds, especially in classical matrix Lie groups and symmetric
spaces, are natural models for many engineering problems. Such problems range from
the control of robots or vehicles to the computational dynamics of large molecules [1,2].

Historically, one of the earliest studies of diffusions in matrix manifolds was con-
cerned with rotation Brownian motion as a model for molecular dynamics — See
Perrin’s 1928 paper [3]. After the advent of stochastic calculus, there was renewed
interest in diffusions in manifolds, pioneered by Yosida [4] and Itô [5], among others.
The initial intuition of Perrin, regarding rotation Brownian motion, was later made
rigorous in McKean’s 1960 paper [6].

Mathematically [7], a diffusion process X in a manifold M is determined by its initial
distribution µ and its infinitesimal generator A, which is a second order differential
operator. For instance, if the manifold M is Riemannian, a diffusion process X whose
generator is A = (1/2)∆, half of the Laplacian operator of M , is known as Riemannian
Brownian motion.

On the other hand, all real world models depend on parameters which characterise,
(for example), time scales, microscopic properties, or effects of the environment. Ac-
cordingly, in concrete applications, one is faced with parameterised diffusions.
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A parameterised diffusion X in the manifold M is given by a parameter space Θ,
here Θ ⊂ Rp for some p ≥ 1, and a parametric family of initial distributions µθ and
generators Aθ. That is, by a rule which associates µθ and Aθ to each value of the param-
eter θ ∈ Θ. Alternatively, a parameterised diffusion is given by a parametric family of
stochastic differential equations, driven by Brownian motion, on the manifold M . The
process X then corresponds to weak solutions of these stochastic differential equations
— See discussion in Paragraph 2.1 and Appendix A. Both of these approaches (using
the generator, or a stochastic differential equation) are concerned with providing a
local description of the diffusion X.

This paper is motivated by the following problem. A path of the parameterised
diffusion X, in the manifold M , is observed in continuous time. Precisely, the available
observation is Xt where t ranges over a finite interval 0 ≤ t ≤ T . Based on this
observation, estimates of the true value of the parameter θ are to be constructed.
The aim is to find estimates which have good asymptotic properties. That is, in the
very least, estimates which converge to the true value of θ as T → ∞. To address
this problem, the paper studies the method of maximum likelihood estimation. Its
main results are to derive the likelihood function and likelihood equation and prove
consistency and asymptotic optimality of maximum likelihood estimates.

In the engineering literature, parameter estimation for diffusions in manifolds has
mostly been considered through specific applied problems. These include aeronau-
tics [8, 9] and, more recently, optical communication [10] and robotics [11].

On the other hand, to the authors’ knowledge, whether in the engineering or in
the mathematics literature, little attention has been devoted to general parameter
estimation problems for diffusions in manifolds, (that is, problems involving a general
parameterised diffusion on a general differentiable manifold). One exception is the
paper by Ng, Caines and Chen [12], concerned with the maximum likelihood method.
It derives the likelihood function, but does not study the asymptotic properties of
maximum likelihood estimates.

It seems that, at present, there exists no systematic study of the asymptotic prop-
erties of maximum likelihood estimation for diffusions in manifolds. The current paper
proposes to address precisely this issue.

The paper applies the following methodology. For parameterised diffusions in Eu-
clidean space, the theory of maximum likelihood estimation, based on continuous time
observation, is well established. The paper combines existing results for diffusions in
Euclidean space with the tools of stochastic differential geometry, in order to generalise
them to diffusions in manifolds. The same general approach has been applied to the
problem of filtering with observation in a manifold [13–16].

For a complete account of maximum likelihood estimation for scalar diffusions, in
continuous time, see the monograph by Kutoyants [17]. For the following, all required
background from stochastic differential geometry can be found in [18] or [19].

The paper opens with Section 2, which is concerned with the definition, geometry
and ergodicity of parameterised diffusions. Paragraph 2.1 defines a parameterised dif-
fusion X on a manifold M . It shows that X induces a parametric family of probability
measures {Pθ; θ ∈ Θ} on the space Ω of continuous paths in M . Here, Θ ⊂ Rp is
the parameter space, and {Pθ; θ ∈ Θ} will be called the parametric model. From the
outset, it is assumed that X is an elliptic diffusion. This means that X defines a
Riemannian metric on the manifold M .
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In order to study asymptotic properties of maximum likelihood estimates, (or any
other kind of estimates), it is necessary to ensure that X does not explode, (that is, Xt

can be observed for all finite time t), and that it is ergodic. Geometric conditions, which
guarantee that X does not explode, are given in Appendix A, Proposition 6, using the
concept of stochastic completeness. Ergodicity of X is characterised in Paragraph 2.3.
These results rely directly on the assumption that X is elliptic.

Paragraph 2.2 develops the stochastic differential geometry of the diffusion X. It
introduces the antidevelopment process x of X. While, in general, x is not a diffusion,
it has its values in a Euclidean space and can be used to give a simple characterisation
of the parametric model {Pθ; θ ∈ Θ}. This is stated precisely in Theorem 1, which is
of fundamental importance to the whole paper. Note that antidevelopment also played
the central role in [16].

Sections 3, 4 and 5 are concerned with maximum likelihood estimation and its
asymptotic properties. Section 3 uses Theorem 1 and Girsanov’s theorem to derive
the likelihood function and likelihood equation for the parametric model {Pθ; θ ∈ Θ},
defined in Section 2. The main result of this section is Proposition 1, which gives the
likelihood function. The likelihood equation is given in Paragraph 3.2. This equation
depends on the length T of the interval of observation, (as explained above, X is only
observed over a finite interval). Its solution θ∗T is the maximum likelihood estimate.

Section 4 proves Propositions 2 and 3. Proposition 2 states that the maximum
likelihood estimate θ∗T is consistent. That is, it converges to the true value of the
parameter θ as T → ∞. Proposition 3 states that θ∗T is asymptotically normal. That
is, the difference between θ∗T and the true value of the parameter θ, is asymptotically
distributed according to a normal distribution. This normal distribution has zero mean
and its covariance matrix is the inverse of the so called Fisher information matrix.
In particular, a byproduct of Proposition 3 is to give the expression of the Fisher
information matrix for parameterised diffusions in manifolds.

Section 5 proves the asymptotic optimality of maximum likelihood estimation. A
class of estimation methods is introduced, (based on the concept of estimating function
as defined by Heyde [20]), of which maximum likelihood is a special case. Propositions
4 and 5 show that, even when other estimation methods lead to estimates which are
asymptotically normal, the smallest possible asymptotic covariance matrix is obtained
by using maximum likelihood estimation, (recall if A and B are symmetric positive
definite matrices, A is said to be smaller than B if B − A is positive definite). Thus,
maximum likelihood estimation is asymptotically optimal within the considered class
of estimation methods.

Here is a heuristic description of how maximum likelihood works in the current
setting. Let X be a parameterised diffusion in the manifold M . In a purely formal
way, assume X has a differential dX, such that dXt can be treated as a tangent vector
to M at Xt. The first step is to identify the drift part of dXt. This should be equal
to Dθ(Xt)dt, where Dθ is a vector field on M depending on the parameter θ. Drift
represents the “deterministic part” of dXt. Once it is removed, dXt −Dθ(Xt)dt is the
“pure diffusion” part. In particular, dXt − Dθ(Xt)dt should have zero expectation.
The basic idea behind the likelihood equation is to consider for θ ∈ Θ the process
wT (θ) defined as follows, (here 〈·, ·〉 is the Riemannian metric of M),

wT (θ) =

∫ T

0

〈K, dXt −Dθ(Xt)dt〉
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where K is any suitable process such that Kt is a tangent vector to M at Xt. If θ is the
true value of the parameter, since dXt−Dθ(Xt) has zero expectation, the process wT (θ)
should be a zero expectation square integrable martingale. Assuming the diffusion X
is ergodic, one hopes to obtain an asymptotically normal estimate of the true vaue of θ
by solving the equation (1/

√
T )wT (θ) = 0 for θ ∈ Θ. The likelihood equation arises by

searching for the process K which gives optimal asymptotic performance, in the sense
of having the smallest possible asymptotic covariance matrix — Compare to Section 5.

In the above explanation, notation like dXt or Dθ(Xt)dt was not given a precise
meaning. The correct definition of dXt, or of the integral in the above expression for
wT (θ), is given in Paragraph 2.2. The various ways of defining Dθ are discussed in
Section 6. On the whole, the paper carries out in a rigorous mathematical way the
heuristic approach just described.

Section 7 discusses the application of maximum likelihood estimation, (precisely,
the likelihood equation of Paragraph 3.2), to parameter estimation for diffusions in
Lie groups and symmetric spaces. It serves as an example, or case study, allowing the
results of Sections 3 and 4 to be discussed in a concrete setting.

2. Parameterised elliptic diffusions

2.1. The parametric model

Let M be a smooth manifold of dimension d and Θ an open subset or Rp. Respec-
tively, M and Θ are the state space and the parameter space.

Observation comes in the form of continuous paths ω, where ω(t) ∈ M for t ≥ 0;
(t represents time). The space of such paths is Ω = C(R+,M), which is the sample
space. The state at time t ≥ 0 is the mapping Xt : Ω→M where Xt(ω) = ωt.

The sample space Ω is considered with the Borel σ-field F generated by the topology
of local uniform convergence. A parametric model associates to each θ ∈ Θ a probabil-
ity measure Pθ on F . This is such that the observation process X = {Xt; t ≥ 0} is an
elliptic diffusion with values in M . The model {Pθ; θ ∈ Θ} is constructed as follows.

Assume given vector fields (Vr; r = 1, . . . , v) on M along with a smooth function
H : Θ ×M → TM , such that Hθ defined by Hθ(x) = H(θ, x) is a also a vector field
on M . Consider, for θ ∈ Θ and x ∈M , the stochastic differential equation,

dYt = Hθ(Yt)dt+

v∑
r=1

Vr(Yt) ◦ dBrt Y0 = x (1)

Here, the unknown process Y = {Yt; t ≥ 0} is required to be pathwise continuous with
values in M . Moreover, ◦dBrt denotes the Stratonovich differential of a standard (unit
strength) Brownian motion (Br; r = 1, . . . , v). The following hypothesis is made,

(H1) For each θ ∈ Θ and x ∈M , equation (1) has a unique weak solution Y xθ .

This means that, (see [7]), it is possible to construct a probability space on which a
Brownian motion (Br; r = 1, . . . , v) and a process Y xθ are defined which together satisfy
(1). The probability measure induced by Y xθ on F , ( the distribution of the paths of
this process), is denoted P xθ .

To specify Pθ, it remains to specify the distribution of X0. Let {µθ; θ ∈ Θ} be a
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family of probability measures, on the Borel σ-field B(M), and define

Pθ(A) =

∫
P xθ (A)µθ(dx) A ∈ F (2)

Then, the distribution of X0 is Pθ ◦ X−1
0 = µθ. Note that the state Xt can only be

observed over a finite time interval t ≤ T . For t ≥ 0, let Ft = σ{Xs; s ≤ t}, so Ft ⊂ F .
In practice, one is really interested in the restriction of each Pθ to FT .

Throughout the following, the assumption is made that X is an elliptic diffusion.
That is, it is assumed the vectors (Vr(x); r = 1, . . . , v) span the tangent space TxM at
each x ∈ M . This is a natural assumption which guarantees that, in (1), Hθ cannot
be separated from the “noise term” by a some linear transformation.

Hypothesis (H1) is somewhat strong, as it requires weak solutions of (1) are defined
for all t ≥ 0. In other words, it requires these solutions do not explode. Under the
assumption that X is elliptic, sufficient conditions of a geometric nature can be stated
which guarantee hypothesis (H1) holds. See Proposition 6, Appendix A.

2.2. The geometry of elliptic diffusion

The main result of the current paragraph is Theorem 1, which uses the geometry
of equation (1) to give a simple characterisation of the parametric model {Pθ; θ ∈ Θ}.
This theorem is the very basis for the study of maximum likelihood estimation, carried
out in subsequent sections.

Note before going on that the only filtration considered on Ω will be {Ft; t ≥ 0}.
Thus, words like “local martingale” or “Brownian motion” should be taken to imply
“with respect to {Ft; t ≥ 0}”. For θ ∈ Θ, let Aθ be the differential operator

Aθf = Hθf +
1

2

v∑
r=1

V 2
r f (3)

defined for all smooth function f on M . The probability measure Pθ is uniquely
determined by the property that Pθ ◦X−1

0 = µθ and, for all smooth function f on M ,

df(Xt) = Aθf(Xt)dt+ dmf
t (4)

where mf , is a Pθ-local martingale with mf
0 = 0 — See [7].

The assumption of ellipticity stated in the previous paragraph has the following
consequence. There exists, on M , a Riemannian metric 〈·, ·〉 which verifies

〈E,K〉 =

v∑
r=1

〈E, Vr(x)〉〈K,Vr(x)〉 E,K ∈ TxM (5)

With respect to this metric, the gradient and Laplacian of a smooth function f read

gradf =

v∑
r=1

(Vrf)Vr ∆f =

v∑
r=1

(
V 2
r −∇VrVr

)
f (6)

Here, ∇ denotes the Levi-Civita connection associated to the metric 〈·, ·〉. With these
definitions in mind, it is possible to reformulate condition (4). Define the Itô differential
〈gradf, dXt〉 by

df(Xt) = 〈gradf, dXt〉+
1

2
∆f(Xt)dt (7)
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Formally, this is the same as a classical Itô formula. Subtracting (4) from (7),

〈gradf, dXt〉 =

〈
gradf,Hθf(Xt) +

1

2

v∑
r=1

∇VrVrf(Xt)

〉
dt+ dmf

t (8)

which is indeed new way of defining the process mf .
In order to state Theorem 1, it will be necessary to extend the definition of Itô

differential 〈gradf, dXt〉 to include 〈E, dXt〉 where E is not necessarily the gradient of
some smooth function. A vector field above X is a process E with values in TM which
is continuous, adapted and such that Et ∈ TXtM for t ≥ 0. By Whitney’s embedding
theorem, it is always possible to write, as in [18],

Et =

n∑
α=1

eαt gradfα(Xt) (9)

where (eα;α = 1, . . . , n) are real-valued, continuous, adapted and (fα;α = 1, . . . , n) is
an embedding of M in Rn. Now, consistently with (7), let

〈E, dXt〉 =

n∑
α=1

eαt 〈gradfα, dXt〉 (10)

This is independent of the chosen functions fα, since these are required to describe an
embedding of M .

Note from (7) and (10),

〈E, dXt〉 =

〈
Et, Hθ +

1

2

v∑
r=1

∇VrVr

〉
dt+ dmE

t dmE
t =

n∑
α=1

eαt dm
fα
t (11)

so that mE is a Pθ-local martingale with mE
0 = 0, for any θ ∈ Θ. Recall that the

quadratic covariation of mf ,mk for any smooth functions f, k is given by [7]

d
[
mf ,mk

]
t

= 〈gradf(Xt), gradk(Xt)〉dt

It follows from (11) that, for vector fields E,K above X, the quadratic covariation of
mE ,mK is given by

d
[
mE ,mK

]
t

= 〈Et,Kt〉dt (12)

At this point, one is tempted to exploit Lévy’s characterisation of Brownian motion
by introducing an orthonormal system of vector fields above X. This intuition is key
to Theorem 1.

An orthonormal frame above X is a family (Ei; i = 1, . . . , d) of vector fields above
X such that, for all t ≥ 0, 〈Eit , E

j
t 〉 = δij for all t ≥ 0. Here, as usual, δij is the

Kronecker delta symbol. To construct an orthonormal frame above X, it is possible to
use the notion of stochastic parallel transport [18]. Here, it is accepted that one exists,
noted (Ei; i = 1, . . . , d) and fixed throughout. Consider the process x with values in
Rd whose components are given by

dxit = 〈Ei, dXt〉 i = 1, . . . , d (13)

Allowing a minor abuse of terminology, this process x will be called the stochastic
antidevelopment of X.

The theorem characterises Pθ using the distribution of x.
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Theorem 1. For θ ∈ Θ, the probability measure Pθ on F is uniquely determined by
the property that Pθ ◦X−1

0 = µθ and

dxit = dit(θ)dt+ dβit(θ) dit(θ) = 〈Eit , Dθ〉 (14)

where (βi(θ); i = 1, . . . , d) is a Pθ-Brownian motion and Dθ = Hθ+(1/2)
∑v
r=1∇VrVr.

Proof. By (2), Pθ ◦X−1
0 = µθ. By (11) and (13),

dxit = dit(θ)dt+ dmi
t

where mi is a Pθ-local martingale. Moreover, by (12),

d
[
mi,mj

]
t

= 〈Ei, Ej〉dt = δijdt

Let βi(θ) = mi. By Lévy’s characterisation of Brownian motion, (βi(θ); i = 1, . . . , d)
is a Pθ-Brownian motion.

Conversely, fix an arbitrary θ ∈ Θ. Let P be a probability measure on F with the
property that P ◦ X−1

0 = µθ and (βi(θ); i = 1, . . . , d) is a P -Brownian motion. Note
that, for any smooth function f on M ,

〈gradf, dXt〉 =

d∑
i=1

(gradf)i(t)dx
i
t (gradf)i(t) = 〈gradf,Eit〉

This is because (Ei; i = 1, . . . , d) is orthonormal and by the chain rule for Itô differen-
tials. It follows from (14) that

〈gradf, dXt〉 =

〈
gradf(Xt), Hθ +

1

2

v∑
r=1

∇VrVr

〉
+ dmt

where dmt =
∑d
i=1(gradf)i(t)dβ

i
t(θ). Clearly, m is then a P -local martingale with

m0 = 0. This shows that P verifies condition (8) and thus the equivalent condition
(4). By uniqueness of Pθ under this condition, P = Pθ.

2.3. Ergodic property of the model

The aim of this paper is to study maximum likelihood estimation for the parametric
model {Pθ; θ ∈ Θ}. Precisely, to describe its asymptotic properties which arise when
T is made arbitrarily large.

Typically, the study of asymptotic properties requires that Pθ, (for each θ ∈ Θ),
should have some form of ergodicity. Precisely, there should exist some probability
measure µ∗θ on B(M), such that for all smooth function f on M

Pθ − lim
T→∞

1

T

∫ T

0

f(Xt)dt = E∗θ (f) (15)

Here, Pθ − lim notes the limit in probability with respect to Pθ and E∗θ denotes
expectation with respect to µ∗θ on B(M).

The assumption of ellipticity made in Paragraph 2.1, implies µ∗θ exists if and only
if µ∗θ(dx) = pθ(x)v(dx) where v is the Riemannian volume measure on M , (recall M
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is equipped with the metric (5)), and pθ is a smooth strictly positive function on M
with [7] ∫

pθ(x)v(dx) = 1 A∗θpθ = 0 (16)

Here, A∗θ is the formal adjoint of Aθ. For any smooth function p on M ,

A∗θp = −div(pDθ) +
1

2
∆p (17)

Recall the Laplacian ∆ was defined in (6), Paragraph 2.2, and Dθ was defined in
Theorem 1. The divergence of a vector field D on M is

div(D) =

v∑
r=1

〈Vr,∇VrD〉 (18)

The following hypothesis is made,

(H2) For θ ∈ Θ, there exists a smooth strictly positive function pθ verifying (16).
Moreover, µθ(dx) = pθ(x)v(dx), so that the observation process X is Pθ-stationary.

Note that uniqueness of pθ for this hypothesis follows from (15). Hypothesis (H2)
is verified whenever M is compact. In general, even if M is not compact, assume a
smooth function U : Θ×M → R is given, such that

Zθ =

∫
exp(−2Uθ(x))v(dx) <∞ (19)

where U(θ, x) = Uθ(x). Then [21], if Dθ = −grad(Uθ), hypothesis (H2) holds for

pθ = Z−1
θ exp(−2Uθ) (20)

3. Maximum likelihood estimation

Maximum likelihood estimation for the parametric model {Pθ; θ ∈ Θ} proceeds
along the following lines — Compare to [17].

Fix some ρ ∈ Θ. Assume it can be shown that, for θ ∈ Θ and T ≥ 0,

dPθ
dPρ

∣∣∣∣
T

= LT (θ) LT (θ) > 0 (21)

where the subscript T on the left hand side denotes restriction of Pθ and Pρ to FT .
Then, the maximum likelihood estimate θ∗T of θ is defined to be any FT -measurable
random variable with values in Θ such that

LT (θ∗T ) = sup
θ∈Θ

LT (θ) (22)

Note that LT (θ) is a random function of θ ∈ Θ, known as the likelihood function. This
is worth emphasising since, in definition (21), dependence on the observation ω ∈ Ω
was suppressed.

An alternative definition of θ∗T requires an additional differentiability property of
LT (θ). Consider the log-likelihood function `T (θ) = log [LT (θ)]. The maximum
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likelihood estimate θ∗T of θ may be defined to be a FT -measurable random variable
with values in Θ solving the equation

∂`T (θ∗T ) = 0 (23)

where ∂ denotes the derivative with respect to θ.
Recall Θ ⊂ Rp, so that (23) is a system of p equations in p unknowns. Definitions

(22) and (23) are not equivalent. However, if θ∗T verifies (22) and LT (θ) is differentiable,
then θ∗T also verifies (23).

3.1. The likelihood ratio

This paragraph is concerned with the existence of a likelihood function LT (θ), as in
(21).

The main result is Proposition 1 below, which refers to the following hypothesis,

(H3) For θ′, θ ∈ Θ, it holds that supx∈M ‖Hθ′(x)−Hθ(x)‖ < +∞.

Here, ‖ · ‖ denotes Riemannian length. The idea of Proposition 1 will be to apply
Girsanov’s theorem to Theorem 1.

Proposition 1. Assume hypotheses (H1-H3) hold. For θ′, θ ∈ Θ and T ≥ 0,

dPθ′

dPθ

∣∣∣∣
T

= LT (θ′, θ) (24)

where the likelihood ratio LT (θ′, θ) is given by

LT (θ′, θ) =
pθ′

pθ
(X0) exp

(∫ T

0

(
δt(θ

′, θ), dβt(θ)
)
dt− 1

2

∫ T

0

∣∣δt(θ′, θ)∣∣2 dt) (25)

Here, (·, ·) and | · | denote Euclidean scalar product and norm on Rd.
Equivalently,

LT (θ′, θ) =
pθ′

pθ
(X0) exp

(∫ T

0

〈∆(θ′, θ), dXt −Dθ(Xt)dt〉 −
1

2

∫ T

0

∥∥∆(θ′, θ)(Xt)
∥∥2
dt

)
(26)

Here, ∆(θ′, θ) = Hθ′−Hθ and δ(θ′, θ) has its values in Rd with δit(θ
′, θ) = 〈Eit ,∆(θ′, θ)〉

for i = 1, . . . , d.

Proof. Hypothesis (H1) guarantees the model {Pθ; θ ∈ Θ} is well defined. Hypoth-
esis (H2) allows division by pθ.

First, it is proved that (25) and (26) are equivalent. Recall the definition of dβt(θ)
in (14), dβt(θ) = dxt − dt(θ)dt.

Starting from (26), note that

〈∆(θ′, θ), dXt −Dθ(Xt)dt〉 = (δt(θ
′, θ), dxt − dt(θ)dt)

This is because (Ei; i = 1, . . . , d) is orthonormal and by the chain rule for Itô differen-
tials, (compare to the proof of Theorem 1). It follows that

〈∆(θ′, θ), dXt −Dθ(Xt)dt〉 = (δt(θ
′, θ), dβt(θ))
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Similarly, due to the fact that (Ei; i = 1, . . . , d) is orthonormal,

‖∆(θ′, θ)(Xt)‖
2
dt = |δt(θ′, θ)|

2
dt

From the last two equalities, the expressions under the exponential in (25) and (26)
are the same.

It remains to prove (24). Note from (14),

dβt(θ
′) = dβt(θ)− δ(θ′, θ)dt (27)

By Theorem 1, β(θ) is a Pθ-Brownian motion.
Under hypothesis (H3), the process L(θ′, θ) given by (25) is a Pθ-martingale. Thus,

a probability measure P on F can be defined by the change of measure formula

dP

dPθ

∣∣∣∣
T

= LT (θ′, θ)

By Girsanov’s theorem, β(θ′) is then a P -Brownian motion. Since L0(θ′, θ) is equal to
(pθ′/pθ)(X0), it follows P ◦X−1

0 = (pθ′/pθ)µθ = µθ′ . Then, P = Pθ′ , by the uniqueness
statement in Theorem 1.

The existence of a likelihood function, as in (21) follows immediately from this propo-
sition. One simply needs to choose a reference probability Pρ, where ρ ∈ Θ, and set
LT (θ) = LT (ρ, θ). Note finally that hypothesis (H3) was only used in showing L(θ′, θ)
is a Pθ-martingale. For this purpose, it can be replaced by weaker hypotheses such as
Novikov’s condition [22].

3.2. The likelihood equation

This paragraph is concerned with equation (23), which will be called the likelihood
equation. The main objective is to write this equation down using Proposition 1. Note
that (25), of Proposition 1, immediately yields

`T (θ) = log

(
pθ
pρ

(X0)

)
+

∫ T

0

(δt(θ, ρ), dβt(ρ))− 1

2

∫ T

0

|δt(θ, ρ)|2 dt (28)

Assume it is possible to differentiate under the integrals, stochastic or ordinary. Re-
placing the definitions of dt(θ) and δt(θ, ρ), (see Theorem 1 and Proposition 1), it
follows by a straightforward calculation

∂`T (θ) = ∂ log pθ(X0) +

∫ T

0

(∂dt(θ), dβt(ρ)) (29)

Or, directly in terms of X,

∂`T (θ) = ∂ log pθ(X0) +

∫ T

0

〈∂Dθ, dXt −Dθ(Xt)dt〉 (30)

In (29) and (30), the derivatives ∂d(θ) and ∂Dθ are integrated component by com-
ponent. Recall that θ denotes an element in Rp, say θ = (θa; a = 1, . . . , p). The
components of ∂d(θ) are the partial derivatives ∂d(θ)/∂θa. These are processes with
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values in Rd, so they can be integrated against dβ(ρ). Similarly, the components of
∂Dθ are the partial derivatives ∂Dθ/∂θ

a. These are vector fields above X and can be
integrated against dX, according to (11). Now, ∂`T (θ) is a random function of θ ∈ Θ
and with range in Rp; (it is known as the score function). Based on (30), the likelihood
equation (23) takes the form

∂ log pθ∗T (X0) +

∫ T

0

〈∂Dθ∗T
, dXt −Dθ∗T

(Xt)dt〉 = 0 (31)

For now, this rests on the assumption that it is possible to differentiate under the
integrals, in particular the stochastic integral, in (28).

In [23], Karandikar gives surprisingly weak conditions which guarantee this assump-
tion holds. Theorem 5 on page 124 of [23], applied to the current context, shows that
(29) is correct as soon as hypothesis (H1) is verified and the function H : Θ×M → TM
possesses locally Lipschitz partial derivatives (∂H/∂θa; a = 1, . . . , p). In Paragraph
2.1, H was introduced as a smooth function, so that it does have the property just
mentioned.

Recall, finally, that (30) is equivalent to (29).

4. Asymptotic properties of maximum likelihood

Maximum likelihood estimation is often used for its good asymptotic properties.

This section is concerned with the properties of consistency and asymptotic nor-
mality, which it respectively states in Propositions 2 and 3 of Paragraphs 4.1 and 4.2
below.

4.1. Consistency of θ∗
T

Roughly, consistency means that the maximum likelihood estimate θ∗T converges
in probability to the “true value” of the parameter θ, as T → ∞. This somewhat
confusing statement translates to the following mathematical condition. For θ ∈ Θ,
any random variables {θ∗T ;T ≥ 0}, defined by (22), verify

Pθ − lim
T→∞

θ∗T = θ (32)

Note that, in general, the supremum in (22) may not be achieved. In this event, set
θ∗T =∞. Condition (32) is understood with this convention.

Proposition 2 will require the following identifiability hypothesis,

(H4) For any θ, θ′ ∈ Θ, the identity Hθ(x) = Hθ′(x) for all x ∈M implies θ = θ′.

Proposition 2. Assume hypotheses (H1-H4) hold and Θ is bounded. If there exist
constants β > 1, γ > p and C > 0 such that

E∗θ‖∆(θ′′, θ′)‖β ≤ C|θ′′ − θ′|γ E∗θ
{
‖∆(θ′′, θ)‖2 − ‖∆(θ′, θ)‖2

}β ≤ C|θ′ − θ′′|γ (33)

for all θ, θ′, θ′′ ∈ Θ, then (32) holds for all θ ∈ Θ.

Proof. Hypotheses (H1-H3) guarantee that Proposition 1 holds.
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Recall, from (21) and (24), that LT (θ′) = LT (θ′, θ)LT (θ). It follows that θ∗T , given
by (22), satisfies

LT (θ∗T , θ) = sup
θ′∈Θ

LT (θ′, θ) (34)

Fix an arbitrary θ ∈ Θ and consider the function g : Θ→ R+,

g(θ′) = −1

2
E∗θ‖∆(θ′, θ)‖2 θ′ ∈ Θ (35)

It follows from hypotheses (H4) that g has a unique global maximum at θ.
For T ≥ 1, consider the random function gT : Θ → R+ where gT (θ′) = T−1`(θ′, θ)

for θ′ ∈ Θ, where `T (θ′, θ) = log[LT (θ′, θ)]. In other words, as in (28),

gT (θ′) =
1

T
log

(
pθ′

pθ
(X0)

)
+

1

T

∫ T

0

(δt(θ
′, θ), dβt(θ))−

1

2T

∫ T

0

|δt(θ′, θ)|
2
dt (36)

Let QT and Q denote, respectively, the probability measures on the (Borel σ-field of
the) the space C(Θ,R), which are the images of Pθ with respect to gT and g. Using
the Kolmogorov-Chentsov tightness condition, it is now shown QT ⇒ Q as T → ∞;
(⇒ denotes weak convergence of probability measures — See [24], page 313).

Note the first term on the right hand side of (36) converges to zero, identically on
Ω, as T →∞. Therefore, it will simply be ignored in the remainder of the proof.

Let IT (θ′) denote the second term and VT (θ) denote the third term, on the right
hand side of (36). Theorem 1 states β(θ) is a Pθ-Brownian motion. It follows that

Eθ |IT (θ′)|2 =
1

T 2

∫ T

0

Eθ‖∆(θ′, θ)(Xt)‖2dt ≤
1

T
sup
x∈M
‖∆(θ′, θ)(x)‖2

where Eθ denotes expectation with respect to Pθ. Hypothesis (H3) states the supre-
mum appearing here is finite. Thus, Pθ − limT→∞ IT (θ′) = 0. Applying (15) to VT (θ),
it follows that

Pθ − lim
T→∞

gT (θ′) = g(θ′) (37)

This shows that finite dimensional projections of QT converge weakly to finite dimen-
sional projections of Q. The Kolmogorov-Chentsov condition follows from (33). Note
first that, for θ′, θ′′ ∈ Θ,

Eθ |IT (θ′′)− IT (θ′)|β ≤ CβEθ
(

1
T

∫ T
0
‖∆(θ′′, θ)‖2(Xt)dt

)β/2
≤ CβEθ

(
1
T

∫ T
0
‖∆(θ′′, θ)‖β(Xt)dt

)
The first inequality is the Burkholder-Davis-Gundi inequality, where Cβ is a universal
constant. The second inequality follows from Jensen’s inequality. When combined with
hypothesis (H2), which states X is Pθ stationary, and (33), this yields

Eθ |IT (θ′′)− IT (θ′)|β ≤ C|θ′′ − θ′|γ (38)

Similarly, it is possible to show

Eθ |VT (θ′′)− IT (θ′)|β ≤ C|θ′′ − θ′|γ (39)
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This is found using the same steps as for (33), but using Hölder’s inequality for ordinary
integrals instead of the Burkholder-Davis-Gundi inequality for stochastic integrals.

Combining (38) and (39), it follows the Kolmogorov-Chentsov tightness condition
is verified by the probability measures {QT ;T ≥ 0}. Therefore, QT ⇒ Q. With this
result, (32) is proved by a classical reasoning. Let U ⊂ Θ be any neighborhood of θ.
From (34),

Pθ(θ
∗
T /∈ U) = Pθ

(
sup
θ′ /∈U

gT (θ′) > sup
θ′∈U

gT (θ′)

)
Since QT ⇒ Q and Θ is bounded, the right hand side converges to zero as T → ∞.
Indeed, under Q the supremum over Θ can only occur at θ. By taking U arbitrarily
small, it follows that (32) holds.

4.2. Asymptotic normality of θ∗
T

The property of asymptotic normality states that, for any θ ∈ Θ, the distribution
of θ∗T − θ, with respect to the probaility measure Pθ on F , is asymptotically normal.
This is proved in Proposition 3 below, which refers to the following hypothesis

(H5) For each θ ∈ Θ, the “Fisher information matrix” I(θ) is invertible. Here,

Iab(θ) = E∗θ
〈
∂Hθ/∂θ

a, ∂Hθ/∂θ
b
〉

a, b = 1, . . . , p (40)

In the following, whenever Z is a F-measurable random variable, Lθ{Z} denotes its
distribution with respect to Pθ. That is, Lθ{Z} = Pθ ◦ Z−1.

Proposition 3. Assume hypothesis (H5) holds and the conditions of Proposition 2
are verified. If E∗θ

(
∂2
)
< +∞, where ∂2 : M → R is given by

∂2(x) = sup
θ∈Θ

p∑
a,b=1

∥∥∥∥∂2Dθ(x)

∂θa∂θb

∥∥∥∥2

(41)

then,
Lθ{
√
T (θ∗T − θ)} ⇒ N

(
I−1(θ)

)
(42)

Here, N(C) denotes a normal distribution with zero mean and covariance matrix C.

Proof. The notation from the proof of Proposition 2 is here maintained. Fix an
arbitrary θ ∈ Θ and a convex neighborhood U ⊂ Θ of θ. By Proposition 2, θ∗T ∈ U
with high probability as T → ∞. Accordingly, in the following, all random variables
are restricted to this event. For θ′ ∈ U , let

zaT (θ′) =
√
T∂agT (θ′) a = 1, . . . , p (43)

Here, ∂a denotes the partial derivative of gT with respect to its a-th argument. The
notation zT (θ′) will stand for the vector (zaT (θ′); a = 1, . . . , p). Differentiating under
the integrals in (36) is justified by the results of [23] — See the argument after (31) in
Paragraph 3.2. This yields, by direct calculation,

zaT (θ′) =
1√
T

∫ T

0

(∂adt(θ
′), dβt(θ)− δt(θ′, θ)dt) (44)
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Note that the first term of (36) was ignored, just like in the proof of Proposition 2. In
particular, putting θ′ = θ,

zaT (θ) =
1√
T

∫ T

0

(∂adt(θ), dβt(θ))

Theorem 1 states β(θ) is a Pθ-Brownian motion. By the central limit theorem for
stochastic integrals [17]

Lθ{zT (θ)} ⇒ N(I(θ)) (45)

The asymptotic covariance matrix I(θ) follows from (15),

Pθ − lim
T→∞

1

T

∫ T

0

(∂adt(θ), ∂bdt(θ)) dt = E∗θ 〈∂aDθ, ∂bDθ〉 = Iab(θ) (46)

Since θ∗T ∈ U , it is possible to apply the mean value theorem

zaT (θ∗T ) = zaT (θ) +

p∑
b=1

∂bz
a
T (θ′′a)(θ∗T − θ)b (47)

The superscript b denotes the b-th component of θ∗T − θ. Here, θ′′a ∈ U lies on the
segment connecting θ to θ∗T . Note that, by (34), the left hand side is zero. To prove
(42) holds, it will be enough to prove

Pθ − lim
T→∞

1√
T
∂bz

a
T (θ′′a) = −Iab(θ) (48)

Indeed, hypothesis (H5) then guarantees it is possible to multiply either side of (47)
by I−1

ca (θ) and sum over a. Let θ′ be any one of the θ′′a , where a = 1, . . . , p, so that
|θ′ − θ| < |θ∗T − θ| — Here, | · | denotes Euclidean norm on Rp. Derivation under the
integrals in (44) gives, (∂ab = ∂a∂b denote mixed second derivatives),

1√
T
∂bz

a
T (θ′) = 1

T

∫ T
0

(∂abdt(θ
′), dβt(θ))

− 1
T

∫ T
0

(∂abdt(θ
′), δt(θ

′, θ))− 1
T

∫ T
0

(∂adt(θ
′), ∂bdt(θ

′)) dt

The variance of the first term on the right hand side is,

1

T 2

∫ T

0

Eθ‖∂abDθ′(Xt)‖2dt ≤
1

T 2

∫ T

0

Eθ
(
∂2(Xt)

)
dt ≤ 1

T
E∗θ
(
∂2
)

Since E∗θ
(
∂2
)
< +∞, this converges to zero as T →∞. For the second term, note

1

T

∫ T

0

(∂abdt(θ
′), δt(θ

′, θ)) dt =
1

T

∫ T

0

〈∂abDθ′(Xt),∆(θ′, θ)(Xt)〉 dt (49)

Using Proposition 2, and ∆(θ, θ) = 0, this can be shown to converge to zero in
probability as T →∞. For the third term, note similarly

1

T

∫ T

0

(∂adt(θ
′), ∂bdt(θ

′)) dt =
1

T

∫ T

0

〈∂aDθ′(Xt), ∂bDθ′(Xt)〉 dt (50)
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The condition E∗θ
(
∂2
)
< +∞ implies, for some constant C depending on U ,

Eθ |〈∂aDθ′(Xt), ∂bDθ′(Xt)〉 − 〈∂aDθ(Xt), ∂bDθ(Xt)〉| ≤ CEθ |θ∗T − θ|

The expectation on the right hand side is finite, since U ⊂ Θ is bounded. Proposition
2, using bounded convergence, implies this expectation converges to zero as T → ∞.
The required (48) now follows from (46) and (50).

5. Optimality of maximum likelihood estimation

The previous section established consistency and asymptotic normality of maximum
likelihood estimation. Here, a further property of asymptotic optimality is considered.
Precisely, the aim is to show that maximum likelihood estimation provides optimal
asymptotic performance within a certain class of other estimation methods.

The main results will be stated in Propositions 4 and 5. These are concerned with
a general setting, which is now described.

Consider a slightly modified definition of the maximum likelihood estimate θ∗T .
Recall (44), which can be used to define a random function zT : Θ→ Rp. Rewrite (44)
using (27) from the proof of Proposition 1. This gives

zaT (θ′) =
1√
T

∫ T

0

(∂adt(θ
′), dβt(θ

′)) a = 1, . . . , p (51)

For θ′ ∈ Θ, the notations zT (θ′) stands for the vector (zaT (θ′); a = 1, . . . , p). The
results of Propositions 2 and 3 continue to hold, if θ∗T is defined for T ≥ 0 as any
FT -measurable random variable with values in Θ and such that zT (θ∗T ) = 0. This can
be seen by going over the proofs of these two propositions, step by step.

Thus, with only a slight abuse of terminology, it is possible to accept that maximum
likelihood estimation consists in finding an FT -measurable root θ∗T of the random
function zT defined in (51). It is then natural to consider a class of estimation methods
defined in a similar way, as follows.

Let Ka : Θ ×M → TM , where a = 1, . . . , p, be smooth functions such that Ka
θ′

defined by Ka
θ′(x) = Ka(θ′, x) are vector fields on M . For T ≥ 0, define a random

function wT : Θ→ Rp by

waT (θ′) =
1√
T

∫ T

0

(kat (θ′), dβt(θ
′)) a = 1, . . . , p (52)

where kat (θ′) is the process with values in Rd whose components are 〈Eit ,Ka
θ′〉, for

i = 1, . . . , d. Let wT (θ′) denote the vector (waT (θ′); a = 1, . . . , p) and ρ∗T be any FT
measurable random variable with values in Θ and such that wT (ρ∗T ) = 0.

Now, the definition of θ∗T appears as a special case of the definition of ρ∗T . Indeed,
(51) results from (52) when Ka

θ′ = ∂aDθ′ . In light of this observation, Proposition 2
shows that it is possible to choose Ka

θ′ so that

Pθ − lim
T→∞

ρ∗T = θ (53)

for each θ ∈ Θ. Propositions 4 and 5 compare the asymptotic performance of θ∗T to
that of ρ∗T . Of course, there is no point in this comparison unless ρ∗T verifies (53).
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Proposition 4. For θ ∈ Θ, let J(θ), J̄(θ) denote the p× p matrices with elements

Jab(θ) = E∗θ 〈Ka
θ ,K

b
θ〉 J̄ab(θ) = E∗θ 〈Ka

θ , ∂bHθ〉 (54)

Assume that J̄(θ) is invertible and let

C(θ) =
(
J̄−1(θ)

)
(J(θ))

(
J̄−1(θ)

)†
(55)

where † denotes the transpose. Assume also that

E∗θ

sup
θ∈Θ

p∑
a,b=1

‖∂bKa‖2
 < +∞ (56)

If Θ is bounded and convex and (53) holds, then for θ ∈ Θ

Lθ{
√
T (ρ∗T − θ)} ⇒ N (C(θ)) (57)

Proof. The proof closely mirrors that of Proposition 3. Fix an arbitrary θ ∈ Θ. By
Theorem 1, β(θ) is a Pθ-Brownian motion. By the central limit theorem for stochastic
integrals, (again, see [17])

Lθ{wT (θ)} ⇒ N(J(θ)) (58)

The asymptotic covariance J(θ) follows from (15),

Pθ − lim
T→∞

1

T

∫ T

0

(
kat (θ), kbt (θ)

)
dt = E∗θ 〈Ka

θ ,K
b
θ〉 = Jab(θ)

Since Θ is convex and ρ∗T is well defined, for sufficiently large T ≥ 0, it is possible to
apply the mean value theorem, (compare to (47) in the proof of Proposition 3),

waT (ρ∗T ) = waT (θ) +

p∑
b=1

∂bw
a
T (ρ′′a)(ρ∗T − θ)b (59)

where ρ′′a lies on the segment connecting θ to ρ∗T . By definition of ρ∗T , the left hand
side is zero. To prove (57), it is enough to prove

Pθ − lim
T→∞

1√
T
∂bw

a
T (ρ′′a) = −J̄ab(θ) (60)

To do so, let θ′ denote any one of the ρ′′a, where a = 1, . . . , p. Derivation under the
integral in (52) gives,

1√
T
∂bw

a
T (θ′) = 1

T

∫ T
0

(∂bk
a
t (θ′), dβt(θ))

− 1
T

∫ T
0

(∂bk
a
t (θ′), δt(θ

′, θ))− 1
T

∫ T
0

(kat (θ′), ∂bdt(θ
′)) dt

Now, (60) can be proved using (53) and (56). This is done following exactly the same
steps as in the proof of Proposition 3.

The following proposition states the asymptotic covariance I−1(θ) obtained in (42)
of Proposition 3 is smaller than any covariance matrix C(θ) arising in (57) of the
previous Proposition 4. In other words, the maximum likelihood estimate θ∗T has
optimal asymptotic performance among all estimates of the form ρ∗T defined here.
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Proposition 5. Assume the conditions of Propositions 3 and 4 hold. For every θ ∈ Θ,
the matrix C(θ)− I−1(θ) is positive defintie.

Proof. The proof follows the classical reasoning of Rao, page 327 of [25]. The
following matrix is clearly positive definite(

J(θ) J̄(θ)
J̄†(θ) I(θ)

)
By Rao’s reasoning, it follows

J(θ)− J̄(θ)I−1(θ)J̄†(θ)

is also positive definite. This is equivalent to the proposition, as J̄(θ) is invertible.

6. The notion of drift and the Le Jan-Watanabe connection

This section provides some general remarks, which are helpful in interpreting and
implementing the estimation methods studied above, mainly maximum likelihood es-
timation.

Two fundamental questions are discussed. First, how to identify the drift part
of the observation process X? Second, how to compute numerically the maximum
likelihood estimate θ∗T ? The discussion of the first question, due to the very nature of
this question, is rather informal and aimed at building intuition.

The first question underlies the class of estimation methods studied in Section 5.
Roughly, by removing from X its drift part, a new object is obtained which is the “pure
diffusion” or Brownian part. At least in principle, setting a normalised version of the
Brownian part to zero yields an asymptotically normal estimate of the parameter θ.

Theorem 1 of Paragraph 2.2 suggests the drift part of dXt is Dθ(Xt)dt. Formally,
the theorem states that the coordinates of dXt −Dθ(Xt)dt in the orthonormal frame
(Ei; i = 1, . . . , d) are dβit(θ), where β(θ) is a Pθ-Brownian motion. The theorem makes
the even stronger statement that this property uniquely determines Pθ.

This argument leads to a straightforward interpretation of the random functions
wT , defined in (52) of Section 5. Indeed, wT (θ′) can be written directly in terms of X,
(compare to (30) in Paragraph 3.2),

waT (θ′) =
1√
T

∫ T

0

〈Ka
θ′ , dXt −Dθ′(Xt)dt〉 a = 1, . . . , p (61)

When θ′ = θ, the expression dXt −Dθ′(Xt)dt appearing here is the Brownian part of
dXt, so wT is asymptotically normal. The choice of the functions Ka is a just a choice
of normalisation determining the asymptotic covariance — See the proof of Proposition
4.

The statement that the drift part of dXt is Dθ(Xt)dt seems counterintuitive in view
of (1) and (3). Looking at (3), for example, the first order part of the operator Aθ is
the vector field Hθ. In the case of scalar or vector diffusions, one is systematically used
to identifying drift from the first order part of the infinitesimal generator, (this being
Aθ at present).

Note also that the object of interest, as far as the parameter θ is concerned, in
Paragraph 2.1, is Hθ. Indeed, X depends on θ only through this function.
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Compare now the following identities, satisfied by Hθ and Dθ,

Hθ = Aθ −
1

2

v∑
r=1

V 2
r Dθ = Aθ −

1

2
∆ (62)

where ∆ is the Laplacian of M , defined in (6). The “advantage” of Dθ over Hθ is
thus purely mathematical. Precisely, using only the Riemannian geometry of M with
metric (5), it is possible to give an intrinsic definition of Dθ, but not of Hθ.

To get an intrinsic definition of Hθ, it is necessary to introduce a new geometric
construction, the Le Jan-Watanabe connection. This is the affine connection ∇̄ on the
tangent bundle of M , defined by the following identity

∇̄KE(x) =

v∑
r=1

K〈E, Vr〉Vr(x) (63)

for each K ∈ TxM and vector field E on M . Note K〈E, Vr〉 is the derivative along the
vector K of the function 〈E, Vr〉. A more detailed account can be found in [16].

Recall now the definition of the Hessian of a smooth function f on M , with respect
to the Levi-Civita connection ∇ or the Le Jan-Watanabe connection ∇̄,

∇2f(K,E) = KEf −∇KEf ∇̄2f(K,E) = KEf − ∇̄KEf (64)

where K,E are vector fields on M . These expressions follow from the standard
definition of the Hessian tensor [19]. It is possible to show then that

Tr∇2f = ∆f Tr∇̄2f =

v∑
r=1

V 2
r f (65)

Where Tr indicates the trace. The first identity is a usual definition of the Laplacian.
The second follows from

Tr∇̄2f =

v∑
r=1

∇̄2f(Vr, Vr) =

v∑
r=1

(
V 2
r − ∇̄VrVr

)
f

However, the last term on the right here is zero, as shown in [16].
Now, (65) provides an intrinsic definition of Hθ. Precisely,

Hθ = Aθ −
1

2
Tr∇̄2 (66)

Based on this new definition of Hθ, it is possible to rewrite (61) in a way that completely
bypasses Dθ′ . This is done by introducing a new Itô differential instead of the one given
by (7)–(10). Let (−)〈gradf, dXt〉 be defined by

df(Xt) = (−)〈gradf, dXt〉+
1

2
Tr∇̄2f(Xt)dt (67)

for any smooth function f on M . This extends to vector fields E above X, so that

(−)〈E, dXt〉 = 〈Et, Hθ〉dt+ dmE
t (68)
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where mE is the same process as in (11). With this definition of the Itô differential, it
is straightforward to verify that (61) is equivalent to

waT (θ′) =
1√
T

∫ T

0

(−)〈Ka
θ′ , dXt −Hθ′(Xt)dt〉 a = 1, . . . , p (69)

Crucially, this is not just a change of notation aimed at hiding away the difference
between Hθ and Dθ. The new Itô differential is well defined in its own right. For
instance it can be approximated numerically using Geodesic interpolation as defined
by Emery [18] or Darling [26].

Roughly, geodesic interpolation is a map which associates to any two points x, y ∈M
which are close enough to each other the vector K = I(x, y) ∈ TxM such that the
geodesic γ with γ(0) = x and γ̇(0) = K verifies γ(1) = y, (the dot denotes the velocity
vector). If the word “geodesic” means a geodesic of the Le Jan-Watanabe connection
∇̄, then the following can be used for numerical approximation

waT (θ′) =
1√
T
Pθ − lim

δ→0

∑
kδ<T

〈
Ka
θ′
(
X(k−1)δ

)
, I
(
X(k−1)δ, Xkδ

)
−Hθ′

(
X(k−1)δ

)
× δ
〉

(70)

where δ > 0 is a step size. In particular, Ka
θ′ = ∂aHθ′ can be used to compute

numerically the maximum likelihood estimate θ∗T . A more intuitive notation can be
used to in writing (70). Let δXk−1 = I(X(k−1)δ, Xkδ) and Xk−1 = X(k−1)δ. Then,
(70) becomes

waT (θ′) =
1√
T
Pθ − lim

δ→0

∑
kδ<T

〈Ka
θ′ (Xk−1) , δXk−1 −Hθ′ (Xk−1)× δ〉 (71)

Now, the method of estimation based on searching for ρ∗T such that wT (ρ∗T ) = 0 simply
expresses the fact that δXk−1−Hθ′ (Xk−1)× δ, which converges to zero as δ → 0, has
an asymptotically normal distribution for small δ. This normal distribution has zero
mean. Moreover, in the in the orthonormal frame (Ei; i = 1, . . . , d), its covariance
matrix is δId where Id is the d× d identity matrix.

7. Diffusions in Lie groups and symmetric spaces

In this section, two closely related examples are considered. First, in Paragraph
7.1, the manifold M is taken to be a Lie group and the observation process X a right
invariant diffusion, on this Lie group. Second, in Paragraph 7.2, M is a symmetric
space, under the action of a connected semisimple Lie group G, and X is a diffusion
in M induced by this group action.

In either case, the aim will be to write down the likelihood equation (31) in a
concrete form, in terms of the Lie group or symmetric space structure. This will require
discussing conditions under which this equation is valid. Such conditions include, at
least, hypotheses (H1-H3).

Invariant diffusions on Lie groups, and more generally Lévy processes on Lie groups,
have generated much recent attention. A thorough account can be found in Liao’s
book [27], which also addresses Brownian motion in symmetric spaces.

A major reference on the differential geometry of Lie groups and symmetric spaces
is Helgason’s monograph [28].
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It is here useful to make some remarks, placing the current section in the general
context of the paper.

The claim was made in the introduction that the paper studies estimation problems
involving a general diffusion on a general manifold. In particular, this means there is
no a priori relation between the diffusion process X and any additional structure on
the manifold M .

The present section studies precisely the special case where X is compatible with
the Lie group or symmetric space structure of the M . Naturally, this leads to certain
simplifications which, in effect, make up much of the following. Using the general
framework of this paper, it is possible to go beyond this special case. For instance,
if M is a Lie group, one may be interested in a diffusion X with stationary density
of the form (20), (roughly, this density represents a Gibbs distribution), which is not
compatible with the Lie group structure, except in trivial cases. Then, the Lie group
structure of M plays a limited role, while the properties of the diffusion X come to the
forefront.

7.1. Invariant diffusion in a Lie group

In this paragraph, it is assumed the manifold M is a Lie group. Sticking to
convention, M is then denoted G. It is clearly interesting to consider the case where
the observation process X is compatible with the Lie group structure of G.

Here, X is taken to be a right invariant diffusion, parameterised by θ ∈ Θ. The aim
will be to describe the maximum likelihood equation (31), of Paragraph 3.2. First, it
is suitable to discuss hypotheses (H1-H3).

Hypothesis (H1) refers to equation (1). In the present context, this equation is
given as follows.

Let e be the identity element of G. Also, let g be the Lie algebra of G, identified as
the tangent space TeG. Fix a basis (σr; r = 1, . . . , d) of g and denote (Vr; r = 1, . . . , d)
the corresponding family, (in fact, basis), of right invariant vector fields [28].

For simplicity, assume Θ = Rd. In other words, the dimension of the parameter
space is the same as the number of vector fields Vr, (this is an identifiability assumption,
similar to hypothesis (H4)).

With this in mind, consider

Hθ(g) =

d∑
r=1

θrVr(g) (θ, g) ∈ Θ×G (72)

Equation (1) can then be transcribed

dYt =

d∑
r=1

Vr(Yt) ◦ dyrt dyrt = θrdt+ dBrt (73)

Since it only involves right invariant vector fields, equation (73) is said to be right
invariant. Precisely, for any h ∈ G, if Y solves this equation then so does Y h, where
Y ht = Yth is the product of Yt and h in the group G.

Now, it can be seen hypothesis (H1) holds without any additional assumptions. In
particular, there is no need to impose the conditions in Appendix A.

This follows by the argument of McKean, in Section 4.7 of [29]. Precisely, by Ado’s
theorem, it is always possible to assume G is a matrix Lie group. Then, (73) is shown
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to be a linear matrix stochastic differential equation, so that it has a unique strong
solution Y defined for all t ≥ 0, independently of its initial condition.

Consider hypothesis (H2). The metric 〈·, ·〉 of (5) is right invariant and completely
defined by the statement that (Vr(g); r = 1, . . . , d) is an orthonormal basis of TgG for
all g ∈ G.

The corresponding volume measure v is a right Haar measure of G. Intuitively, since
equation (73) is right invariant, the probability measure µ∗θ must also be right invariant
— Recall that µ∗θ appears in (15) of Paragraph 2.3. It follows that µ∗θ, when it exists,
is a constant multiple of the Haar measure v. A rigorous form of this reasoning can be
found in [27].

To conclude, when G is compact, therefore of finite volume, hypothesis (H2) is
verified, with pθ a normalising constant independent of θ. When G is not compact,
hypothesis (H2) is not verified.

Finally, hypothesis (H3) is trivially verified. Since Hθ(g) is defined by (72) and the
vectors Vr(g) are orthonormal, it follows for θ′, θ ∈ Θ that ‖Hθ′(g)−Hθ(g)‖ = |θ′− θ|,
which is uniformly bounded in g. Recall here | · | is the Euclidean norm on Θ.

When G is compact, hypotheses (H1-H3) are verified. The likelihood equation (31)
then reads ∫ T

0

〈
Vr, dXt −

d∑
u=1

θuTVu(Xt)dt

〉
= 0 r = 1, . . . , d (74)

where (θuT ;u = 1, . . . , d) denote the components of the maximum likelihood estimate
θ∗T , (which is a random element of Rd).

To see (74) is indeed the likelihood equation, recall this equation is obtained by
setting equal to zero the score function ∂`T given by (30).

It has been stated that, in the present context, pθ is independent of θ, so that the
first term on the right hand side of (30) becomes identically zero. The second term on
the right hand side of (30) should be written down according to the definition of Dθ,
from Theorem 1. Recall the expression of the Levi-Civita connection

∇VrVu =
1

2
[Vr, Vu] (75)

where [·, ·] denotes the Lie bracket of two vector fields. In particular, [Vr, Vr] = 0 and
therefore Dθ = Hθ. Replacing in (30), the score function ∂`T follows from a simple
calculation and (74) can be obtained immediately.

To apply equation (74) in practice, recall the vector fields (Vr; r = 1, . . . , d) define
an orthonormal basis (Vr(g); r = 1, . . . , d) in each tangent space TgG. This implies the
solution of (74) is given by

θrT =
1

T

∫ T

0

〈Vr, dXt〉 (76)

For concreteness, assume now G is a matrix Lie group. Formula (76), for the maximum
likelihood estimate, admits the following simplification. Formally, recalling the metric
〈·, ·〉 is right invariant, it is possible to write

〈Vr(Xt), dXt〉 = 〈Vr(Xt)X
−1
t , dXtX

−1
t 〉

Here, Xt is a random matrix and X−1
t its inverse matrix, both of them with their values

in the group G. Since the vector fields Vr are right invariant, Vr(g)g−1 = Vr(e) = σr
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for g ∈ G. Replacing in (76), it follows

θrT =
1

T

∫ T

0

〈σr, dXtX
−1
t 〉 (77)

The correct interpretation of this formula is that dXtX
−1
t is a matrix of Itô stochastic

differentials which is formed, (according to the standard rule for matrix product), as
the product of the matrices dXt and X−1

t . A rigorous justification of the equivalence
between (76) and (77) is given in [30].

It is possible to express (77) using only matrix operations. That is, without any
reference to differential geometry on the Lie group G. Recall that (σr; r = 1, . . . , d)
are orthonormal. This implies

θ̂∗T =
1

T

∫ T

0

dXtX
−1
t (78)

where θ̂∗T =
∑d
r=1 θ

r
Tσr. Since (σr; r = 1, . . . , d) are linearly independent, θ̂∗T and

θ∗T determine each other uniquely. Formula (78) gives an expression of the maximum
likelihood estimate θ∗T , which is immediately applicable whenever G is a matrix Lie
group. For particular matrix Lie groups, this formula can be simplified even further.
For example, if G is a group of orthogonal or unitary matrices, the matrix inverse
under the integral can be replaced by a transpose or Hermitian transpose.

In the above discussion, the condition that the Lie group G is compact was imposed
in order to ensure that hypothesis (H2) holds. It did not play any role in the discussion
of the likelihood equation (74) and its solution.

Even when G is not compact, equation (74) is still well defined and its (unique)
solution given by (76), or equivalently (78). However, in this case of non compact
G, equation (74) cannot be termed a likelihood equation, without some substitute
assumption as to the distribution of X0 being made.

Without assuming G is compact, it is possible to prove that θ∗T , defined by (76),
is consistent and normal, and therefore asymptotically normal. These are the same
conclusions as in Propositions 2 and 3 of Section 4. Note that, for θ ∈ Θ, by (76),

θrT − θr =
1

T

∫ T

0

〈
Vr, dXt −

d∑
u=1

θuVu(Xt)dt

〉

This is verified by direct calculation, using the fact that the vector fields Vr are
orthonormal in each tangent space of G. Using (11), (12) and Lévy’s characterisation
of Brownian motion, (compare to the proof of Theorem 1), it follows that

Lθ{
√
T (θ∗T − θ)} = N(Id) (79)

where Id is the d× d identity matrix. This shows θ∗T is indeed consistent and normal.

The matrix expression for the maximum likelihood estimate, given by (78), is
essentially the same as suggested by Willsky and Lo [8, 9], who directly considered
the special case where G is a matrix Lie group.
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7.2. Induced diffusion in a symmetric space

In this paragraph, the manifold M is taken to be a simply connected symmetric
space and the observation process X an induced diffusion in M , parameterised by
θ ∈ Θ, (the term “induced diffusion” is used in [27]). The aim will be to give a
concrete expression of the likelihood equation (31).

To begin, assume a connected semisimple Lie group G acts on M transitively so
M = G/K where K is the isotropy group of some point o ∈ M . The Lie algebras of
G and K are denoted g and k, respectively. Recall the following basic property [28].
There exists a scalar product (·, ·) on g, which is Ad(K)-invariant. Accordingly, if m
denotes the orthogonal complement of k, then m is also Ad(K)-invariant.

As a special case of this setting, spaces of constant curvature can be obtained,
(spherical, Euclidean and hyperbolic spaces). Precisely [31], M has constant curvature
if and only if all orthogonal transformation O of m is of the form O = Ad(k), k ∈ K.

Induced diffusions in spaces of constant curvature arise in many engineering prob-
lems. Consider, for example, the propagation of electromagnetic waves in random
media. In [32], propagation in random lossless optical fibres was modeled using induced
diffusions in the unit sphere S2, considered with the action of the rotation group
SO(3). To model propagation in lossy optical fibres, it is necessary to consider induced
diffusions in the light cone, considered with the action of the Lorentz group SO(1, 3).
Besides propagation in random optical fibres, propagation in random transmission
lines can be modeled using induced diffusions in the Poincaré unit disc, which is a
model of the basic hyperbolic space, with the action of SL(2,R) — See [33]. Note
that randomness in optical fibres, transmission lines, or other propagation media, is a
physical effect due to the presence of inhomogeneities which destroy the coherency of
electromagnetic waves.

For simplicity, it will be assumed that M is embedded in some higher dimensional
Euclidean space, where G acts as a matrix Lie group. The action of G on M is therefore
denoted as a multiplication, x 7→ gx, where g ∈ G is a matrix and x ∈ M a vector.
To write down equation (1), let v be the dimension of G and (σr; r = 1, . . . , v) an
orthonormal basis of g. For x ∈M , let Vr(x) be the vector in Tx(M) given by

Vr(x) =
d

dt

∣∣∣∣
t=0

exp (tσr)x = σrx (80)

where exp : g→ G is the matrix exponential.
Let Θ = Rv, as in the previous paragraph, and define

Hθ(x) =

v∑
r=1

θrVr(x) (θ, x) ∈ Θ×M (81)

Now, equation (1) can be copied

dYt =

v∑
r=1

Vr(Yt) ◦ dyrt dyrt = θrdt+ dBrt (82)

This looks exactly like equation (73) from the previous paragraph. However, the vector
fields Vr are here defined on the symmetric space M and not on the Lie group G. In
particular, the number v of these vector fields is greater than the dimension d of M .
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The relation between equations (73) and (82) is the following. Let R be a process
with values in G which solves (73) with initial condition R0 = e, (recall e is the identity
element of G). If x ∈ M then the process Y where Yt = Rtx solves (82) with initial
condition x.

In other words, a diffusion X in M whose infinitesimal generator is given by (3),
according to (80) and (81), can be induced by a right invariant diffusion with values
in G. This justifies the name “induced diffusion” [27].

As in the previous paragraph, hypothesis (H1) holds without any additional as-
sumptions. Replacing the expression of the vector fields Vr, from (81), shows equation
(82) is a linear stochastic differential equation, so it has a unique strong solution Y ,
defined for all t ≥ 0, given any initial condition.

In order to go on, it is necessary to discuss the metric 〈·, ·〉 of (5) and the associated
Levi-Civita connection ∇.

It turns out the metric 〈·, ·〉 is induced by the scalar product (·, ·) on g. Define
V : g×M → TM to be the mapping, (this is a kind of repetition of (81)),

V (σ, x) =
d

dt

∣∣∣∣
t=0

exp (tσ)x = σx (83)

This will also be written V (σ, x) = Vxσ.
For fixed x ∈ M , this is a linear mapping Vx : g → TxM . Its kernel is denoted

kx. For example, ko = k. The orthogonal complement of kx is denoted mx, (this is the
orthogonal complement with respect to (·, ·)). Because G acts transitively on M , the
mapping Vx is surjective for all x ∈M . Its restriction to mx is an isomorphism between
mx and TxM . If E ∈ TxM , its unique inverse image in mx, under Vx, is denoted V −1

x E
or V −1(E, x).

The metric 〈·, ·〉 is given by

〈E,K〉 =
(
V −1
x E, V −1

x K
)

E,K ∈ TxM (84)

Moreover [28], it is invariant under the action of G on M . To show that (84) indeed
verifies (5), note first that

V −1
x (Vxσ) = Πx(σ) (85)

where Πx denotes orthogonal projection of σ ∈ g onto mx. Using this identity, and the
fact that (σr; r = 1, . . . , v) form an orthonormal basis of g, the right hand side of (84)
can be written

v∑
r=1

(
V −1
x (E),Πx(σr)

) (
V −1
x (K),Πx(σr)

)
=

v∑
r=1

〈E, Vr(x)〉〈K,Vr(x)〉

which is (5). Note the fact that V −1
x maps g to mx allows σr to be replaced by Πx(σr).

Since 〈·, ·〉 is invariant under the action of G on M , the corresponding volume
measure v is also invariant under this action. Moreover, invariance under the action of
G uniquely defines v. Using the corresponding result from the previous paragraph, it
is now possible to show that hypothesis (H2) is verified if and only if G is compact.
In this case, pθ is a normalising constant independent of θ. Roughly, this follows by
recalling, as stated above, that any solution Y of (82) is of the form Yt = Rtx where
R is a solution of (73) and x ∈M . For a rigorous formulation, see [27].
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Hypothesis (H3), is immediately verified. It can be shown that

‖Hθ′(x)−Hθ(x)‖2 ≤ |θ′ − θ|2

This is because, letting θ′ − θ = λ, (using (81), (84) and (85)), the left hand side is

v∑
r,u=1

λrλu〈Vr(x), Vu(x)〉 =

v∑
r,u=1

λrλu (Πx(σr),Πx(σu)) ≤
v∑

r,u=1

λrλu (σr, σu) = |λ|2

Thus, the hypothesis is verified, since the right hand side does not depend on x. In
conclusion, hypotheses (H1-H3) are verified, as soon as G is compact.

Assuming G is compact, the likelihood equation (31), in the present case, takes on
a form very similar to (74). Precisely, (31) can be written∫ T

0

〈
Vr, dXt −

v∑
u=1

θuTVu(Xt)dt

〉
= 0 r = 1, . . . , v (86)

Here, the notation θuT is the same as in equation (74) of the previous paragraph. That
this is indeed equation (31) should be verified by expressing the score function ∂`T of
(30). The first term on the right hand side of (30) is identically zero, because pθ does
not depend on θ. For the second term, the definition of Dθ should be applied, (this
was given in Theorem 1). This requires being able to evaluate

∑v
r=1∇VrVr where ∇

is the Levi-Civita connection. In [34], (Theorem 1.4.8 on page 28), it is shown that∑v
r=1∇VrVr = 0. Thus, (86) follows from (30).
Equation (86) is a linear equation for θ∗T . It has a unique solution, for any value of

T . Indeed, this equation reads, (recall the components of θ∗T are the θuT ),

v∑
u=1

(∫ T

0

〈Vr(Xt), Vu(Xt)〉dt

)
θuT =

∫ T

0

〈Vr, dXt〉 r = 1, . . . , v (87)

Moreover, the v× v matrix with elements 〈Vr(Xt), Vu(Xt)〉 is strictly positive definite.
Since equation (86), or (87), is well defined, its solution only required a matrix

inversion. Evaluation of the matrix on the left hand side only involves an ordinary
integral. The stochastic integral on the right hand side can be approximated using
geodesic interpolation as indicated in Section 6.

8. Conclusion

The method of maximum likelihood estimation studied in this paper has several
advantages. It has a clear interpretation and leads, mostly, to analytically tractable
expressions. Its numerical implementation, as briefly discussed in Section 6, is often
feasible but becomes completely unreliable when the sampling frequency, (inverse of
the step size δ appearing in (70) and (71)), cannot be made large enough. This is
not surprising as the method was developed from the start with the assumption of
continuous time observation.

Even when this assumption holds, it may be useful to consider other estimation
methods, such as the generalised method of moments [35]. In particular, the generalised
method of moments is quite straightforward to apply in the case of a reversible diffusion,
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(given by (20) of Paragraph 2.3). Unfortunately, due to lack of space, this could not
be detailed here.

In the case where the assumption of continuous time observation cannot be con-
sidered to hold, the parameter estimation problem becomes significantly harder. De-
veloping general estimation methods with guaranteed performance, for this case, is
an interesting topic for future research. Of course, it is always possible to pursue a
brute force Monte Carlo method, in order to simulate the likelihood function of discrete
time observation. In the Euclidean case, this was done in [36]. Analytically, it is very
difficult to know the exact form or even the properties of this function.

Other approaches may lead to tractable methods, which require less computational
effort than direct Monte Carlo simulation. As an indication for future work, consider
the two following methods.

Recall, from Section 6, that the maximum likelihood method for continuous time
observation is based on the fact that the “geodesic increments” of the observation
process are asymptotically normal, when the step size δ becomes small — See discussion
after (71). When δ cannot be considered small, by analogy with the idea of [37] for
the Euclidean case, one could try expanding the likelihood function in an Edgeworth
series, in order to obtain an approximate likelihood equation.

The second method, particularly well suited for the case of a reversible diffusion, is to
construct martingale estimating functions using the eigenfunctions of the infinitesimal
generator. In the Euclidean case, this was developed in [38].

In addition to the assumption of continuous time observation, another fundamental
assumption for this paper was that the observation process is an elliptic diffusion.
Indeed, all geometric constructions used in the paper are based on the Riemannian
metric, (given by (5)), defined by the ellipticity assumption.

An interesting direction, in which the current paper can be generalised, is dropping
the assumption of ellipticity and replacing it by hypoellipticity. Roughly, this would
not change much of the ergodic properties of the observation process, but would require
a more advanced approach to the geometry of this process.

In conclusion, while the general problem of parameter estimation for diffusions in
manifolds has received very little attention in the literature, the extensive development
of parameter estimation methods for Euclidean diffusions, and of the tools stochastic
differential geometry, makes it an interesting target for future research, where many
new results can be found.
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Appendix A. Stochastic completeness and hypothesis (H1)

The current appendix is aimed at giving sufficient conditions which guarantee hy-
pothesis (H1) holds. These conditions, given in Proposition 6 below, mainly involve
the Riemannian geometry of the manifold M with metric (5). In many cases, this
means they are relatively easy to check and thus of practical use.

Recall hypothesis (H1) states existence and uniqueness of weak solutions of equation
(1), for each value of the parameter θ ∈ Θ.

Precisely, existence of a weak solution means it is possible to construct a probability
space, on which a Brownian motion B and a process Y xθ are defined that together
satisfy (1). Here, uniqueness of weak solutions is taken to mean that the distribution
P xθ of Y xθ is uniquely determined by x and θ.

Note, in particular, that hypothesis (H1) requires the solution Y xθ of (1) is defined
for all t ≥ 0. That is, Y xθ does not explode. Hypothesis (H1) is always verified when
M is compact. Compactness of M even guarantees existene and pathwise uniqueness
of strong solutions [7].

The main proposition, Proposition 6 below, does not require M to be compact.
Rather, it is invokes the geometric notion of stochastic completeness. The Riemannian
manifold M , with metric (5), is called stochastically complete if a Brownian motion
started at any point x ∈M does not explode.

Precisely, M is stochastically complete if the following equation has a unique weak
solution Y x defined for all t ≥ 0,

dYt = −1

2

v∑
r=1

∇VrVr(Yt)dt+

v∑
r=1

Vr(Yt) ◦ dBrt Y0 = x (88)
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Here, x ∈M is any deterministic initial condition. Applying the classical Itô formula,
it is straightforward that for any smooth function f on M ,

df(Yt) =
1

2
∆f(Yt)dt+

v∑
r=1

Vrf(Yt)dB
r
t (89)

whenever Y is a weak solution of (88). Thus, in this case, Y solves the martingale
problem associated to the Laplacian ∆ of M — Recall the definition of ∆ from (6).
This is the usual definition of Brownian motion on a Riemannian manifold.

There are many simple sufficient conditions for stochastic completeness. For exam-
ple, all Riemannian manifolds whose Ricci curvature is bounded below are stochas-
tically complete. More generally, all Riemannian manifolds with polynomial volume
growth are stochastically complete. Such conditions can be checked using classical
results in Riemannian geometry [19].

It is worth mentioning that stochastic completeness is a not implied by geodesic
completeness, (Proposition 4.2.6 on page 111 of [19]).

The idea of Proposition 6 is that when M is stochastically complete, a weak solution
of (1) can be obtained from a weak solution of (88) by a Change of measure, using
Girsanov’s theorem.

Proposition 6. Assume M is stochastically complete. If, for θ ∈ Θ, supx∈M ‖Dθ(x)‖ <
+∞, then hypothesis (H1) holds.

Proof. SinceM is stochastically complete, there exists some probability space (Ω̃, F̃ , P̃ ),
on which a Brownian motion B and a process Y x, (for each x ∈M), are defined such
that (88) is satisfied. Moreover, Y x is defined with values in M for all t ≥ 0.

For any smooth function f on M , the process Y x verifies (89). Written out, using
(6), this becomes

df(Y xt ) =
1

2

v∑
r=1

{V 2
r f(Y xt )−∇VrVrf(Y xt )}dt+

v∑
r=1

Vrf(Y xt )dBrt t ≥ 0 (90)

Since ‖Dθ‖ is bounded, the following process L is a P̃ -martingale, (with respect the
augmented filtration generated by Y x and B),

Lt = exp

( ∫ t

0

v∑
r=1

〈Dθ(Y
x
t ), Vr(Y

x
t )〉dBrt −

1

2

∫ t

0

‖Dθ(Y
x
t )‖2dt

)
(91)

Then, there exists a probability measure P̃θ on F̃ such that

dP̃θ

dP̃

∣∣∣∣∣
t

= Lt t ≥ 0 (92)

By Girsanov’s theorem B(θ), defined by the following formula, is a P̃θ-Brownian motion

dBrt (θ) = dBrt − 〈Dθ(Y
x
t ), Vr(Y

x
t )〉dt (93)

From (90), using the fact that Dθf =
∑v
r=1〈Dθ, Vr〉Vrf ,

df(Y xt ) = {Hθf(Y xt ) +
1

2

v∑
r=1

V 2
r f(Y xt )}dt+

v∑
r=1

Vrf(Y xt )dBrt (θ) t ≥ 0
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which is the same as

df(Y xt ) = Hθf(Y xt )dt+

v∑
r=1

Vrf(Y xt ) ◦ dBrt (θ) t ≥ 0

Since this holds for any smooth function f , it follows that Y x and B(θ) together satisfy
the equation (1) with respect to P̃θ. This shows the existence of a weak solution defined
for all t ≥ 0.

Uniqueness of the distribution P xθ of Y x under P̃θ follows from uniqueness of the

distribution of the same process Y x under P̃ . This is because Lt > 0, so P̃θ and P̃
are equivalent. Note that uniqueness of the distribution of Y x under P̃ is due to the
uniqueness of the fundamental solution of the heat equation on M .


